

MI3144ST

Mesureur d'impédances 4 fils

Le MI 3144 Euro Z 800 V est un instrument de test multifonction, portable (Li-ion) ou alimenté par le secteur, doté d'une excellente protection IP: IP65 (boîtier fermé), IP54 (boîtier ouvert). Il peut être contrôlé via une application Android aMESM, ou via un contrôleur multifonction MW9665 ou MI3325. Le MI 3144 Euro Z 800 V est destiné à mesurer l'efficacité de la protection à déclenchement automatique en cas de défaillance des transformateurs et autres équipements HT. Avec ses mesures de haute précision d'impédance de ligne et de boucle sur les circuits alternatifs et continus, ses mesures de boucle et de ligne à fort courant dR 300A pour le test de courants et de chute de tension partiel, il est idéal pour les tests en milieu industriel. Il prend également en charge les mesures de tension de contact, le test du relais de fuite électrique ELR avec injection de courant de défaut, la mesure du temps de déclenchement et les mesures de source DC : ligne, batterie et accumulateur.

Application

- Test de l'impédance de ligne / boucle du transformateur de puissance sous tension à 4 fils 300A haute précision
- Intensité élevée du système de mise à la terre dR 300A
- Mesure du potentiels de terre, tensions de pas, de contact et de transfert
- Evaluation automatique de la protection contre le déclenchement en cas de défaillance des transformateurs, générateurs, turbines, contacteurs, tableaux de distribution et tableaux de distribution lorsque les charges énergétiques et les sources de protection dépassent 200 A
- Mesure de transformateur de puissance et de bobinage du moteur
- Mesure de la tension de contact
- Simulation de défaut à la terre avec injection de courant élevé.

Principales caractéristiques

- Mesure d'impédance de ligne et de boucle à 4 fils pour une mesure haute précision
- Mesure d'impédance sur plage de tension élevée : 800V / 16 ... 420Hz
- Mesures de résistance DC et de résistance de ligne dans les réseaux 3 ... 260 V DC
- Chute de tension partielle à 4 fils à courant élevé : dR 300 A
- Temps et courant d'essai de déclenchement du relais de fuite à la terre (ELR)
- Types d'ELR supportés : AC, A et B
- Analyse des défauts de terre avec mesure de tension de contact, de touché et de pas
- Voltmètre flottant pour des résultats de contact partiels
- Méthode de mise à la terre à courant élevé avec une pince (flex et fer)
- Charge d'essai sélectionnable (16,6% à 100%)
- Instrument de test **portable** alimenté par batterie (Li-ion) ou secteur
- Protection IP: IP65 (boîtier fermé), IP54 (boîtier ouvert)
- Catégorie de sécurité CAT IV 600 V
- Communication Bluetooth®
- Design Black Box (commandé via un appareil Android ou via un contrôleur multifonction MW9665 ou MI3325).

Un jeu d'accessoires complets livré en standard

Spécification							
Caractéristiques de Fonction Impedance [Z] Z line $m\Omega$ Z loop $m\Omega$	G a 0, 20	amme de mesure 1 mΩ 199,9 mΩ 00 mΩ 1999 mΩ 2,00 Ω 19,99 Ω	2	Résol u 0.1 n 1 m 10 m	Ω	±(5 % de la ±(5 % de la	récision a lecture + 3 m Ω) a lecture + 3 m Ω) lecture + 3 digits)
Impedance [Z] Courant fort ∆ R	20	$1 \text{ m}\Omega \dots 199,9 \text{ m}\Omega \dots 1999 \text{ m}\Omega \dots 1999 \text{ m}\Omega \dots 19,99 \Omega \dots $	2	0.1 n 1 m 10 m	Ω	±(5 % de la ±(5 % de la	a lecture + 3 m Ω) a lecture + 3 m Ω) lecture + 3 digits)
Impedance [Z] Courant fort Rsel	20	<u>1 mΩ 199,9 mΩ</u> 00 mΩ 1999 mΩ 2,00 Ω 19,99 Ω		0.1 n 1 m 10 m	Ω	±(8 % de la	a lecture + 3 m Ω) a lecture + 3 m Ω) lecture + 3 digits)
Resistance DC [R] R line $m\Omega$		0 mΩ 1999 mΩ 2,00 Ω 19,99 Ω		1 m 10 m			lecture + 3 digits) lecture + 3 digits)
Potentiel de terre [U] Ucontact		0,0 V 199,9 V 200 V 999 V		0,1 1 \			ur calculée ur calculée
Potentiel de terre [U] Um		1 mV 1999 mV 2,00 V 19,99 V 20,0 V 199,9 V		1 m 10 m 0,1	nV	±(2 % de la	lecture + 2 digits) lecture + 2 digits) lecture + 2 digits)
Test ELR [I et t] ELR I	20	,1 mA 199,9 mA 00 mA 1999 mA 2,00 A 19,99 A		0.1 n 1 m 10 n	A	±(5 % de la	lecture + 3 digits) lecture + 3 digits) lecture + 3 digits)
Test ELR [I et t] ELR t	2),1 ms 199,9 ms :00 ms 1999 ms 2,00 s 20,00 s		0.1 r 1 m 10 n	IS	±(2 % de la	lecture + 3 digits) lecture + 3 digits) lecture + 3 digits)
Fonction	Туре	Gamme		de mesure	Gamme d'affichage		
Courant [l]	A1281	0,5 A 5 A 100 A	0,10 A 2 A	749 mA 7,49 A . 149 A 999 A	0 749 mA 0,00 7,49 A 0,0 99,9 A 100 149 A 0 999 A	1 mA 0,01 A 0,1 A 1 A 1 A	±(2,5 % de la lecture+3 digits) ±(2,5 % de la lecture + 3 digits)
Courant [l]	A1227 A1609	30 A 300 A 3000 A	6 A	59,9 A . 599 A 5,99 kA	0,0 59,9 A 0 599 A 0,00 5,99 kA	0,1 A 1 A 0,01 kA	±(3,5 % de la lecture + 3 digits) ±(3,5 % de la lecture + 3 digits) ±(3,5 % de la lecture + 3 digits)

Caracteristiques generales		
Batterie	7,2 V CC (4,4 Ah Li-ion)	
Autonomie	3h typique (décharge profonde)	
Alimentation	90 260 V AC, 45 65 Hz, 80 VA	
Catégorie de surtension	300 V CAT II	
Degré de pollution	2	
Degré de protection	IP 65 (boitier fermé), IP 54 (boitier ouvert)	
Dimensions	36 cm x 16 cm x 33 cm	
Masse	6,5kg	

Livré avec :

Instrument MI 3144 Euro Z 800 V; Cordon secteur; Cordon RS232-PS / 2; Cordon de test 5 m, noir, 2 pcs; Cordon de test 5 m, rouge, 1,5 mm2, 2 pcs; Cordon de test 50 m, rouge, 1,5 mm2 *; Cordon de test 20 m, noir; Cordon de test 50 m, vert *; Pince de test Kelvin, 2 pcs; Pince crocodile, noir, 2 pcs; Pince crocodile, rouge, 2 pcs; Pince crocodile, verte; Pointe de touche, noir, 2 pcs; Pointe de touche, rouge, 2 pcs; pince G; Sonde de résistance du corps humain; Piquet de test, 2 pcs; Plaques de tension de pas, 2 pcs; Licence Metrel ES Manager BASIC; Application Android Metrel aMESM avec licence P1102; rapport de test; sac de protection pour accessoires; sac de transport souple*.

Accessoires optionnels:

A1620 : Cordon de test 5m, noir A1621 : Cordon de test 20m, noir

A1527: Cordon de test 5m, rouge A1640: Cordon de test 20m, rouge

A1608: Cordon de test 20m, vert

A1654 : Cordon de test sur enrouleur, 50m, 1,5mm², rouge

A1509: Cordon de test sur enrouleur,

50m, 1,5mm², noir

A1510: Cordon de test sur enrouleur,

50m, 1,5mm², vert

A1619: Cordon de test, 2 fils

A1593: Pince de test Kelvin

A1595: Pince crocodile noire

A1596: Pince crocodile rouge

A1609 : Pince flex

A1281: Pince 0,5/5/100/1000 A / 1 V

A1013 : Pince crocodile, noire A1064 : Pince crocodile, rouge

A1014 : Pointe de touche, noire A1016 : Pointe de touche, rouge

A1530 : Pince type "G"

A1597 : Sonde résistance de corps humain

A1022: Piquets de terre, 2pcs

A1528 : Piquet de terre professionnel pour injection de courant,

S2053: Plaques de mesure de tension de pas, 2pcs

P1101: Licence pro MESM

A1658 : Valise de transport pour MI3144

A1227: Pince flex 3000/300/30 A / 1 V

A1660 : Rallonge de test sur enrouleur, 75 m, rouge, vert, 2,5 mm2

Spécifications susceptibles d'être modifiées sans préavis - FT MI3144 F00

ISO 9001
Qualité
AFNOR CERTIFICATION

32, rue Edouard Martel - BP55- 42009 - St Etienne - cedex 2

Tél. +33 (0) 4.77.59.01.01 Fax. +33 (0) 4.77.57.23.23

Web: www.sefram.fr - e-mail: sales@sefram.fr

Partenaire Distributeur

99 rue Beranger 92320 Chatillon - France Tel.: +33 (0) 1 71 16 17 00 E-mail: contact@testoon.com

www.testoon.com